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ECS315 2014/1 Part IV.1 Dr.Prapun

10 Continuous Random Variables

10.1 From Discrete to Continuous Random Variables

In many practical applications of probability, physical situations
are better described by random variables that can take on a con-
tinuum of possible values rather than a discrete number of values.
For this type of random variable, the interesting fact is that

• any individual value has probability zero:

P [X = x] = 0 for all x (18)

and that

• the support is always uncountable.

These random variables are called continuous random vari-
ables.

10.1. We can see from (18) that the pmf is going to be useless for
this type of random variable. It turns out that the cdf FX is still
useful and we shall introduce another useful function called prob-
ability density function (pdf) to replace the role of pmf. However,
integral calculus36 is required to formulate this continuous analog
of a pmf.

10.2. In some cases, the random variable X is actually discrete
but, because the range of possible values is so large, it might be
more convenient to analyze X as a continuous random variable.

36This is always a difficult concept for the beginning student.
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Example 10.3. Suppose that current measurements are read from
a digital instrument that displays the current to the nearest one-
hundredth of a mA. Because the possible measurements are lim-
ited, the random variable is discrete. However, it might be a more
convenient, simple approximation to assume that the current mea-
surements are values of a continuous random variable.

Example 10.4. If you can measure the heights of people with
infinite precision, the height of a randomly chosen person is a con-
tinuous random variable. In reality, heights cannot be measured
with infinite precision, but the mathematical analysis of the dis-
tribution of heights of people is greatly simplified when using a
mathematical model in which the height of a randomly chosen
person is modeled as a continuous random variable. [17, p 284]

Example 10.5. Continuous random variables are important mod-
els for

(a) voltages in communication receivers

(b) file download times on the Internet

(c) velocity and position of an airliner on radar

(d) lifetime of a battery

(e) decay time of a radioactive particle

(f) time until the occurrence of the next earthquake in a certain
region

Example 10.6. The simplest example of a continuous random
variable is the “random choice” of a number from the interval
(0, 1).

• In MATLAB, this can be generated by the command rand.
In Excel, use rand().

• The generation is “unbiased” in the sense that “any number
in the range is as likely to occur as another number.”

• Histogram is flat over (0, 1).

• Formally, this is called a uniform RV on the interval (0, 1).
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Definition 10.7. We say that X is a continuous random vari-
able37 if we can find a (real-valued) function38 f such that, for any
set B, P [X ∈ B] has the form

P [X ∈ B] =

∫
B

f(x)dx. (19)

• In particular,

P [a ≤ X ≤ b] =

∫ b

a

f(x)dx. (20)

In other words, the area under the graph of f(x) between
the points a and b gives the probability P [a ≤ X ≤ b].

• The function f is called the probability density function
(pdf) or simply density.

• When we want to emphasize that the function f is a density
of a particular random variable X, we write fX instead of f .

37To be more rigorous, this is the definition for absolutely continuous random variable. At
this level, we will not distinguish between the continuous random variable and absolutely
continuous random variable. When the distinction between them is considered, a random
variable X is said to be continuous (not necessarily absolutely continuous) when condition (18)
is satisfied. Alternatively, condition (18) is equivalent to requiring the cdf FX to be continuous.
Another fact worth mentioning is that if a random variable is absolutely continuous, then it
is continuous. So, absolute continuity is a stronger condition.

38Strictly speaking, δ-“function” is not a function; so, can’t use δ-function here.
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206 Part 2: Probability

learning
objectives

After reading this
chapter, you should

be able to:

• Understand the nature and the applications of the normal distribution.

• Use the standard normal distribution and z-scores to determine probabilities
associated with the normal distribution.

• Use the normal distribution to approximate the binomial distribution.

• Understand the nature and the applications of the exponential distribution,
including its relationship to the Poisson distribution of Chapter 6.

• Use the computer in determining probabilities associated with the normal and
exponential distributions.

7.1 INTRODUCTION

Chapter 6 dealt with probability distributions for discrete random variables,
which can take on only certain values along an interval, with the possible values
having gaps between them. This chapter presents several continuous probability
distributions; these describe probabilities associated with random variables that
are able to assume any of an infinite number of values along an interval.

Discrete probability distributions can be expressed as histograms, where the
probabilities for the various x values are expressed by the heights of a series of
vertical bars. In contrast, continuous probability distributions are smooth curves,
where probabilities are expressed as areas under the curves. The curve is a func-
tion of x, and f(x) is referred to as a probability density function. Since the con-
tinuous random variable x can be in an infinitely small interval along a range or
continuum, the probability that x will take on any exact value may be regarded as
zero. Therefore, we can speak of probabilities only in terms of the probability that
x will be within a specified interval of values. For a continuous random variable,
the probability distribution will have the following characteristics:

The probability distribution for a continuous random variable:

1. The vertical coordinate is a function of x, described as f(x) and referred to as
the probability density function.

2. The range of possible x values is along the horizontal axis.
3. The probability that x will take on a value between a and b will be the

area under the curve between points a and b, as shown in Figure 7.1. The

a b
x

f(
x)

Area = P(a ≤ x ≤ b)

FIGURE 7.1
For a continuous random
variable, the probability dis-
tribution is described by a
curve called the probability
density function, f(x). The
total area beneath the curve
is 1.0, and the probability
that x will take on some
value between a and b is
the area beneath the curve
between points a and b.

Figure 13: For a continuous random variable, the probability distribution is
described by a curve called the probability density function, f(x). The total
area beneath the curve is 1.0, and the probability that X will take on some
value between a and b is the area beneath the curve between points a and b.

Example 10.8. For the random variable generated by the rand

command in MATLAB39 or the rand() command in Excel,

Definition 10.9. Recall that the support SX of a random variable
X is any set S such that P [X ∈ S] = 1. For continuous random
variable, SX is usually set to be {x : fX(x) > 0}.

39The rand command in MATLAB is an approximation for two reasons:

(a) It produces pseudorandom numbers; the numbers seem random but are actually the
output of a deterministic algorithm.

(b) It produces a double precision floating point number, represented in the computer
by 64 bits. Thus MATLAB distinguishes no more than 264 unique double precision
floating point numbers. By comparison, there are uncountably infinite real numbers in
the interval from 0 to 1.
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10.2 Properties of PDF and CDF for Continuous Ran-
dom Variables

10.10. fX is determined only almost everywhere40. That is, given
a pdf f for a random variable X, if we construct a function g by
changing the function f at a countable number of points41, then g
can also serve as a pdf for X.

10.11. The cdf of any kind of random variable X is defined as

FX(x) = P [X ≤ x] .

Note that even though there are more than one valid pdfs for
any given random variable, the cdf is unique. There is only one
cdf for each random variable.

10.12. For continuous random variable, given the pdf fX(x), we
can find the cdf of X by

FX(x) = P [X ≤ x] =

∫ x

−∞
fX(t)dt.

10.13. Given the cdf FX(x), we can find the pdf fX(x) by

• If FX is differentiable at x, we will set

d

dx
FX(x) = fX(x).

• If FX is not differentiable at x, we can set the values of fX(x)
to be any value. Usually, the values are selected to give simple
expression. (In many cases, they are simply set to 0.)

40Lebesgue-a.e, to be exact
41More specifically, if g = f Lebesgue-a.e., then g is also a pdf for X.
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Example 10.14. For the random variable generated by the rand

command in MATLAB or the rand() command in Excel,

Example 10.15. Suppose that the lifetime X of a device has the
cdf

FX (x) =


0, x < 0
1
4x

2, 0 ≤ x ≤ 2
1, x > 2

Observe that it is differentiable at each point x except at x = 2.
The probability density function is obtained by differentiation of
the cdf which gives

fX (x) =

{
1
2x, 0 < x < 2
0, otherwise.

At x = 2 where FX has no derivative, it does not matter what
values we give to fX . Here, we set it to be 0.

10.16. In many situations when you are asked to find pdf, it may
be easier to find cdf first and then differentiate it to get pdf.

Exercise 10.17. A point is “picked at random” in the inside of a
circular disk with radius r. Let the random variable X denote the
distance from the center of the disk to this point. Find fX(x).

10.18. Unlike the cdf of a discrete random variable, the cdf of a
continuous random variable has no jump and is continuous every-
where.

10.19. pX(x) = P [X = x] = P [x ≤ X ≤ x] =
∫ x
x fX(t)dt = 0.

Again, it makes no sense to speak of the probability that X will
take on a pre-specified value. This probability is always zero.

10.20. P [X = a] = P [X = b] = 0. Hence,

P [a < X < b] = P [a ≤ X < b] = P [a < X ≤ b] = P [a ≤ X ≤ b]

122



• The corresponding integrals over an interval are not affected
by whether or not the endpoints are included or excluded.

• When we work with continuous random variables, it is usually
not necessary to be precise about specifying whether or not
a range of numbers includes the endpoints. This is quite dif-
ferent from the situation we encounter with discrete random
variables where it is critical to carefully examine the type of
inequality.

10.21. fX is nonnegative and
∫
R fX(x)dx = 1.

Example 10.22. Random variable X has pdf

fX(x) =

{
ce−2x, x > 0
0, otherwise

Find the constant c and sketch the pdf.

Definition 10.23. A continuous random variable is called expo-
nential if its pdf is given by

fX (x) =

{
λe−λx, x > 0,
0, x ≤ 0

for some λ > 0

Theorem 10.24. Any nonnegative42 function that integrates to
one is a probability density function (pdf) of some random
variable [8, p.139].

42or nonnegative a.e.
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10.25. Intuition/Interpretation:
The use of the word “density” originated with the analogy to

the distribution of matter in space. In physics, any finite volume,
no matter how small, has a positive mass, but there is no mass at
a single point. A similar description applies to continuous random
variables.

Approximately, for a small ∆x,

P [X ∈ [x, x+ ∆x]] =

∫ x+∆x

x

fX(t)dt ≈ fX(x)∆x.

This is why we call fX the density function.

4.1 Densities and probabilities 139

Definition

We say that X is a continuous random variable if P(X ∈ B) has the form

P(X ∈ B) =
∫

B
f (t)dt :=

∫ ∞

−∞
IB(t) f (t)dt (4.1)

for some integrable function f .a Since P(X ∈ IR) = 1, the function f must integrate to one;

i.e.,
∫ ∞
−∞ f (t)dt = 1. Further, since P(X ∈ B) ≥ 0 for all B, it can be shown that f must be

nonnegative.1 A nonnegative function that integrates to one is called a probability density

function (pdf).

Usually, the set B is an interval such as B = [a,b]. In this case,

P(a ≤ X ≤ b) =
∫ b

a
f (t)dt.

See Figure 4.1(a). Computing such probabilities is analogous to determining the mass of a

piece of wire stretching from a to b by integrating its mass density per unit length from a to

b. Since most probability densities we work with are continuous, for a small interval, say

[x,x+∆x], we have

P(x ≤ X ≤ x+∆x) =
∫ x+∆x

x
f (t)dt ≈ f (x)∆x.

See Figure 4.1(b).

(a) (b)

a b x+x x

Figure 4.1. (a) P(a ≤ X ≤ b) =
∫ b

a f (t)dt is the area of the shaded region under the density f (t). (b) P(x ≤ X ≤
x+∆x) =

∫ x+∆x
x f (t)dt is the area of the shaded vertical strip.

Note that for random variables with a density,

P(a ≤ X ≤ b) = P(a < X ≤ b) = P(a ≤ X < b) = P(a < X < b)

since the corresponding integrals over an interval are not affected by whether or not the

endpoints are included or excluded.

Some common densities

Here are some examples of continuous random variables. A summary of the more com-

mon ones can be found on the inside of the back cover.

aLater, when more than one random variable is involved, we write fX (x) instead of f (x).

Figure 14: P [x ≤ X ≤ x+ ∆x] is the area of the shaded vertical strip.

In other words, the probability of random variable X taking on
a value in a small interval around point c is approximately equal
to f(c)∆c when ∆c is the length of the interval.

• In fact, fX(x) = lim
∆x→0

P [x<X≤x+∆x]
∆x

• The number fX(x) itself is not a probability. In particular,
it does not have to be between 0 and 1.

• fX(c) is a relative measure for the likelihood that random
variable X will take on a value in the immediate neighborhood
of point c.

Stated differently, the pdf fX(x) expresses how densely the
probability mass of random variable X is smeared out in the
neighborhood of point x. Hence, the name of density function.
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10.26. Histogram and pdf [17, p 143 and 145]:
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Figure 15: From histogram to pdf.

(a) A probability histogram is a bar chart that divides the range
of values covered by the samples/measurements into intervals
of the same width, and shows the proportion (relative fre-
quency) of the samples in each interval.

• To make a histogram, you break up the range of values
covered by the samples into a number of disjoint adjacent
intervals each having the same width, say width ∆. The
height of the bar on each interval [j∆, (j + 1)∆) is taken
such that the area of the bar is equal to the proportion
of the measurements falling in that interval (the propor-
tion of measurements within the interval is divided by the
width of the interval to obtain the height of the bar).

• The total area under the probability histogram is thus
standardized/normalized to one.

(b) If you take sufficiently many independent samples from a con-
tinuous random variable and make the width ∆ of the base
intervals of the probability histogram smaller and smaller, the
graph of the probability histogram will begin to look more and
more like the pdf.
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(c) Conclusion: A probability density function can be seen as a
“smoothed out” version of a probability histogram

10.3 Expectation and Variance

10.27. Expectation : Suppose X is a continuous random variable
with probability density function fX(x).

EX =

∫ ∞
−∞

xfX(x)dx (21)

E [g(X)] =

∫ ∞
−∞

g(x)fX(x)dx (22)

In particular,

E
[
X2
]

=

∫ ∞
−∞

x2fX(x)dx

VarX =

∫ ∞
−∞

(x− EX)2fX(x)dx = E
[
X2
]
− (EX)2.

Example 10.28. For the random variable generated by the rand

command in MATLAB or the rand() command in Excel,

Example 10.29. For the exponential random variable introduced
in Definition 10.23,
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10.30. If we compare other characteristics of discrete and continu-
ous random variables, we find that with discrete random variables,
many facts are expressed as sums. With continuous random vari-
ables, the corresponding facts are expressed as integrals.

10.31. All of the properties for the expectation and variance of
discrete random variables also work for continuous random vari-
ables as well:

(a) Intuition/interpretation of the expected value: As n → ∞,
the average of n independent samples of X will approach EX.
This observation is known as the “Law of Large Numbers”.

(b) For c ∈ R, E [c] = c

(c) For constants a, b, we have E [aX + b] = aEX + b.

(d) E [
∑n

i=1 cigi(X] =
∑n

i=1 ciE [gi(X)].

(e) VarX = E
[
X2
]
− (EX)2

(f) VarX ≥ 0.

(g) VarX ≤ E
[
X2
]
.

(h) Var[aX + b] = a2 VarX.

(i) σaX+b = |a|σX .

10.32. Chebyshev’s Inequality :

P [|X − EX| ≥ α] ≤ σ2
X

α2

or equivalently

P [|X − EX| ≥ nσX ] ≤ 1

n2

• This inequality use variance to bound the “tail probability”
of a random variable.

• Useful only when α > σX
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Example 10.33. A circuit is designed to handle a current of 20
mA plus or minus a deviation of less than 5 mA. If the applied
current has mean 20 mA and variance 4 mA2, use the Chebyshev
inequality to bound the probability that the applied current vio-
lates the design parameters.

Let X denote the applied current. Then X is within the design
parameters if and only if |X − 20| < 5. To bound the probability
that this does not happen, write

P [|X − 20| ≥ 5] ≤ VarX

52
=

4

25
= 0.16.

Hence, the probability of violating the design parameters is at most
16%.

10.34. Interesting applications of expectation:

(a) fX (x) = E [δ (X − x)]

(b) P [X ∈ B] = E [1B(X)]
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